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Abstract. The space groups of the orthorhombic approximant lattices to the primitive 
icosahedral quasilattice are classified. There exist three Bravais classes: P"m,  Cmmm 
and Immm. 'be  basis vectors of the Bravais lattice of an approximan1 are parallel to two-, 
three- andlor fivefold axes of the quasilattice. It is found that there exist many non- 
symmarphic space groups with a c m " n  Bravais lattice in addition to symmorphic ones. 
This is because glides commonly appear. 

1. Introduction 

A quasicrystal has a regular atomic structure with a non-crystallographic point sym- 
metry (see e.g. Janssen 1988); it is not periodic but quasiperiodic. It has been recognized 
that many phases of approximant crystals to a quasicrystal exist in the neighbourhood 
of the stoichiometry of the quasicrystal (Henley 1985, Knowles 1988, Ohashi 1989, 
Spaepen el a/ 1990, Audier and Guyot 1990, Zhang and Kuo 1991). 

The structure of a quasicrystal is described by a quasilattice (QL), while that of its 
approximant crystal by a periodic approximant (PA) to the QL (Elser and Henley 1985, 
Knowles 1988). We have developed a theory of the space groups of the PA to a QL 

(Niizeki 1991a, b); a QL has PAS with different lattice constants and different space 
groups. 

A QL is obtained by the cut-and-projection method from a mother lattice L which 
is a periodic lattice in higher dimensions than the physical dimensions (Katz and 
Duneau 1986, Janssen 1988); the mother lattice is cut with a strip before projected on 
to the physical space. Similarly, a PA to the QL is obtained by the same method from 
its mother lattice i, which is obtained by introducing a phason strain into L (Ishii 
1989). The phason strain makes a lattice plane of i overlap the physical space perfectly 
(Niizeki 1991a. b). Different PAS are obtained from a single mother lattice i because 
there exists a degree of freedom known as the phase vector in the cut-and-projection 
method (Niizeki 1991a). The Bravais lattice of a PA is given by the restriction of i 
onto the physical space, while the space group of the PA is determined by the point 
symmetry of the phase vector with respect to the shadow lattice, which is the projection 
of i onto the internal space; a high symmetry PA is obtained when the phase vector 
is located on a special point of the shadow lattice. 

The point group of the Bravais lattice of a PA is determined by the symmetry of 
the phason strain in i (Ishii 1989). Dmitrienko (1987, 1990) discussed the space groups 
of the cubic PAS to icosahedral quasilattices (IQL.) by focusing on the reciprocal space 
properties, while Knowles (1988) discussed orthorhombic approximants. In this paper, 
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we will present a complete classification of the space groups of orthorhombic PAS to 
the primitive IQL and also of cubic ones. 

We shall introduce in section 2 the properties of the primitive IQL. The properties 
of the mother lattices of orthorhombic PAS to the IQL are extensively investigated in 
section 3. Several important examples of the non-primitive Bravais lattices appearing 
as the PAS are presented in section 4. PAS to the IQL are constructed in section 5 by the 
cut-and-projection method from the mother lattices. We shall introduce in section 6 
special points, lines and planes of the shadow lattice. The space groups of the 
orthorhombic PAS to the IQL are completely classified in section 7. Section 8 is devoted 
to discussion. 

2. The primitive icosahedral quasilattice 

The mother lattice L of the primitive IQL (I”%) in three dimensions ( 3 ~ )  is a simple 
hypercubic lattice in 6 ~ .  The 6~ Euclidean space into which L is embedded is decom- 
posed into the physical space and the internal space as E6= E,@ E;. The basis vectors 
si = (e!, el) of L are given as 

where the first (or the last) three components represent e, (or el) and T =  (1  +&)/2 
is the golden ratio. Note that E , .  E, = 2 ( ~ 1 , ) ~ 8 , ~  with o R = m .  

Twleve vectors *ei (or *el)  are vertex vectors of an icosahedron Y (or I”) in E, 
(or E ; ) .  We show in figure 1 the projection of Y onto plane perpendicular to the 
threefold axis e, + e2 + e,; the threefold rotation C, around this axis permutes cyclically 

4 

Figure 1. The projection of the icosahedron Y onto the plane perpendicular to a threefold 
axis. The centre of Y is located an the origin of E, and the six numbered vertices of Y 
show et. x, y and I axes of the Cartesian coordinate system of E, arc parallel to twofold 
axes which pass the middie points afthe three edges indicated. Two fivefold exes and two 
threefold ones are included in the xy-plane. 
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the members of the triplets {e,, e2, e,} and {en, e5 ,  e6}. Three twofold axes which are 
orthogonal to each other are chosen as the three axes of the Cartesian coordinate 
system of E,  (or E ; ) .  The point group of Y is equal to mj5( Yh). 

The projection of L onto E, is a dense set, L,= {Z, niei ni E Z}, because e, are 
linearly independent over Z.  L, is called a pre-quasilattice. L, is mathematically a 
Z-module. An IQL is a discrete subset of L,. A lattice vector &n,e, of Lp is indexed 
as [n,n2n3n4nsn6]. The projection L6 of L onto E ;  is a also pre-quasilattice. L, is 
invariant against the quasi-space group g,= ‘ Y h * i p  ( = { { v i i i i v E  k;i, i E i j ) ,  a semi- 
direct product. Yh is lifted to a 6o point group, which is usually identified with Y h .  

The 6~ point group Yh leaves E, and E ;  invariant and g, is the restriction of the 6D 
space group Yh * L of L onto E,. 

Only three of six e, (or e;) are linearly independent over the algebraic field Q [ T ] .  
The linear relationship among e, along a two-, three- or fivefold axis of Y is given by 

(e, + e 5 ) / T  - (e, - e4) = 0 

(e ,+e2+e3) /p  -(e4+e,+e6)=0 

or 

f i e ,  - (e2+ e, - e,+ e,+ e6) = 0, 

where p = 2 + f i  (=T’). ej satisfy similar linear relationships but T,  p and fi are 
replaced by their algebraic conjugates, - I / T ,  - l / p  and -&. 

h IQL 

(2) 3 Q(Q, W ) =  xn,ef n , ~ Z , x n ; e : + Q ~  W I a  I i 

is characterized by Q ( € E ; ) ,  the phase vector, and W (C E;), the window. Q(Q, W )  
has Yh as its macroscopic point symmetry group provided that W is invariant against 
Yh. Two I Q L ~  with a common window but different phase vectors are locally isomorphic. 

If W is a rhombic triacontahedron whose edge length is aR. then Q(Q, W )  is a 
3o-Penrose tiling (Katz and Duneau 1986) with prolate rhombohedra and oblate ones; 
ap. is equal to the edge length of the rhombohedra. The volumes of the two types of 
rhombohedra are given by R, = 2~~ and Ro = 2% 

3. The mother lattices of orthorhombic approximants to the IQL 

3.1. An orthorhombic distortion of L 

We shall introduce an orthorhombic distortion into L so that the resulting lattice i 
becomes commensurate with E,. This is implemented by approximating the incom- 
mensurate ratio T in the fourth, fifth or sixth row of (1) by its rational approximant 
T , ,  T~ or T,, respectively, where T,  =p,/q, (Henley 1985, Knowles 1988, Ohashi 1989). 
A best approximant is obtained if q, and p4 are consecutive Fibonacci numbers. 

conditions Fo = 0 and F,  = I .  Fk are determined, alt_ernatively, as integers satisfying 
the equation Fk + T F ~ + ~  = T ~ + ’ .  The basis vectors of L are given by Z, =(e,, S:) with 

Fibcnacci n.;:-he:: Fk sadsf;. the recsrsian re!ation .E*+,= Fk+.RR-l \Vi!!! the ixitia! 

(& i; 2; & ;; & ) = ( b ,  bz 6,)J ( 3 )  
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where bl = ( b , ,  0, 0). b2 = (0, b, ,  0 )  and b, = (0, 0, b3) and 

0 -P3 4 3  4 3  0 P, 

91 0 -PI PI 41 

- ~ 2  q 2  0 0 p2 (4) 

Note that b, = l/qi-but the exact values of bi are indifferent to the properties of the 
PA obtained from L because the internal space is ultimately crushed by the projection. 
In fact, we obtain bi =&T/(piT+qi)  if L is derived by introducing a linear phason 
strain into L (Niizeki 1991b). This choice is superior to that because it works even if 

L is characterized by the triplet ( T ~ ,  T ~ ,  7,). We shall abbreviate the triplet as ( T J  

in the case of T ,  = T ~ =  Q. C, permutes T ~ ,  T? and T, cyclically, so that ( T ~ ,  T ~ ,  TJ is 
congruent with ( T ~ ,  T, , T ~ )  and ( T ? ,  T ] ,  T ~ )  (but not congruent with ( T,  , T, , T ~ )  and its 
G y u K  pc L LLLULIIIVLLS, . 

Pi/qL= 1/0. 

-..-I:^ ---...-. 
3.2. The Bravais lattice oJa PA 

The Bravais lattice which represents the translatipnal symmetry of a PA derived from 
i is given by LE= i n  E,, i.e. the restriction of L onto E, (Niizeki 1991a). The point 
group G of L, is mmm(D2,,), i.e. orthorhombic, in the general case, but m3( Th), i.e. 
tetrahedral, in the special case (7,)  (Elser and Henley 1985). The space group of LE 
is given by g, = G * LB. 

Let e t ,  a2 or a, be the shortest lattice vector of LB among those which are parallel 
to the first, second or third axis of E,, respectively. Then we obtain 

(aI a2 .,)=(e1 e2 e, e4 es 4 K  (5) 
with K being a 6 x 3 integer matrix whose transpose is given by 

PI 0 41 -41 PI 0 
‘ K =  q 2  p2 0 0 - q 2  P 2 ) .  i 0 43 P 3  Pa 0 - q 3  

The three columns of K are the indices of ai. Since J‘K =0, we obtain 
,e2e,e4ese6) K =O. The lattice constants of the rectangular unit cell of LE are given 

by ai = lai/ = 2(pi7+ qi). Note that p , ~ +  qi are powers of T. 

E, is a hyper-lattice plane of i and is indexed by K or by the dual index J (Niizeki 
1991b). If K is ‘unimodular’,’ ai are basis vectors of LE and LE belongs to P ” m .  
This is the case as will be shown shortly if and only if p1p2p,+q1q2q3 is odd or, 
equivalently, if the following condition is satisfied: 

Condition 1.  pi or qi are all odd but one of pi or qi is even. 

(h’ -, -, -I - , - I  f 

If this is not the case, L, belongs to Cmmm, Immm or Fmmm according to: 
(i) ( a , + a 2 ) / 2 ~ L g  and (a2+a3)/2eLB, 

(ii) ( a , + a 2 + a 3 ) / 2 ~ L B  or 
(iii) ( a 1 + a 2 ) / 2 ~ L B ,  ( a 2 + a , ) / 2 ~ L B  and (a ,+a , ) /2sLB,  

respectively. 

t A rectangular integer matrix is called ‘unimodular’ if it is embedded into the conventional unimodular 
matrix (Niizeki 1991b). 
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Since 

+a2= (PI+  q2)e,+p2(e2+ e,)+ qt(e3- ea)+ (pl - q h ,  

we can conclude that the condition (a, + a2)/2 E L, is satisfied if pI + q2, p 2  and q1 are 
all even; pI - q2 is even if p, + q2 is. It follows that p1 and qz must both be odd because 
pl/ql andp21q2 are simple fractions. Thus, whether or not the condition (aI + a2) /2 E L. 
is satisfied is determined by the parities of pi and qi. The same is true for the other 

can assume the three cases, +/-, -/+ and -I-. The Bravais class of LB is determined 
as in table l(a).  Condition 1 above is nothing but that L,  belongs to neither of Cmmm 
and Immm. Im? and Pm? are cubic Bravais classes. Note that Fmmm and Fm? never 
appear as the Bravais lattices of PAS to the IQL. 

,.-..A:,:--" Î.̂..̂ L^ ̂^.. ^^ - A:..:":-.. I-.. 1:- :..-,..>"A :.. -..-.#:.:-.. ---".:- " ,- 
C U L I U I I I " L . D  a"""= "CCPUIF LI UL*IJIUII uy L 13 I I I ~ L Y Y S U  111 r*n)l CUIIYIIIUII. , l l G  L P L l "  yj, yi 

Table 1. Bravais classes of ( a )  LB (=ill€,) and ( b )  the shadow lattice L,. The symbol 
* means that the relevant parity is arbitrary, while means that the parity is wmmon 
between the relevant integen. Condition 1 is given in the text. Note that LB (or LJ belongs 
to Immm (or Fmmm) if (T,, v2,  7,) is transformed into the form in the third row of ( a )  
(or (b ) )  byacyclicpermutationof 7,. L,orL,belongstoA"m(orBmmm)if C,(v,, v?, 7,) 

(or (CJ*(r,, Q ,  7,)) takes the farm in the second row of (a) (or ( b ) ) .  

( 0 )  

Bravais class Parity Example 

Bravais class Parity Example 

In the case where L, does not belong to the primitive Bravais class (Pmmm), its 
basis vectors, a:, are related to a, as (ala,a,) = (a ;a ia i )H,  where H is given by 

0 1 1  
(1) (-a S )  or (11) (; ; ;) 

according to whether L, belongs to Cmmm or Immm, respectively. We shall denote 
these matrices as H I  or H,, ,  respectively. If follows that K is decomposed as K = K'H, 
where K '  is a 6 x 3 'unimodular' matrix. a: are related to e, by a similar equation to 
( 5 )  but with K '  in place of K. K'  is called a reduced form of K. 

The volume of the rectangular unit cell of L .  is given by n = ata2a3 = 8.1" with n 
being an integer. n/n,=47"-'=4(F.-,~+F~-~), so that n=4(Fn_,iI,+F._,R,). It 
follows that the number of prolate (or oblate) rhombohedra of a PA in the rectangular 
unit cell is given by 4F._, (or 4Fn_,) and the total number by 4F.. By an elementary 
topological argument, we can show that the total number (4F.) is also equal to the 
number of the lattice points of the PA in the orthorhombic unit cell. 
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3.3. The shadow lattice 

The projection of f onto E ;  is a discrete set in contrast to Lb. It is, in fact, a Bravais 
lattice called the shadow lattice (Niizeki 1991a), which is denoted as L,. A lattice 
vectorofL,iswrittenas mlbl+m2b2+m3b3 ,wherem=(m, ,m2 ,m3)=Jn  withnEZ6.  
That is 

L, = { m , b ,  + m2b2+ m3b31 m E JZ6} (7) 

where JZ6= {Jn In  E Z6} is a submodule of Z3 (the simple cubic lattice). L, as well as 
LB has G as its point group with G = mmm or m3. The space group of L, is given by 
g,= G * L,. 

The Bravais class to which L, belongs is determined by the parities of pi and qi 
and the rules are given in table l(b),  which are proved in appendix 1. Note that the 
case Immm never appears and also that L, and L, belong together to Pmmm. b, are 
the basis vectors of L, only in the case of Pmmm. The basis vectors bl in other cases 
are given by (b ib ib i )  = (b,b2b3)H. 

There exists a natural surjection 'p from L, onto L,; Xi nie, E LD+ Xj niel E L,. 'p is 
a homomorphism between the two Z-modules and LB is its kernel. It is naturally 
extended to a homomorphism from &,= G * L, (cg,) to g, (Niizeki 1991a); 'p acts 
on G as an identity operation. 

4. Several important cases of the oon-primitive Bravais lattices 

4.1. The Fibonacci numbers and their analogues 

We begin by investigating the panty sequence of the Fibonacci series { F k ) =  
{0, 1, 1,2,3,5,8, 13,. . .). From the equality = Z T +  1, we obtain another recursion 
relation, Fk+3=2Fk+,+Fk. It follows that Fk and Fk+, have a common parity. More 
precisely, we can conclude from Fo = 0 and F, = 1 that Fk is even if k = 0 mod 3 but 
is odd otherwise. Gk= F,,/2 are generated by Gk,,=4Gk+Gk-, with Go=O and 
GI = 1; {Gk} = {0, 1,4, 17,72,305, . . .}. The parity alternates in the series Gk. Gk+dGk 
is a best approximant to p ( = 2 + A ) ,  which satisfies p2=4p+1.  Moreover we have 
Gk+Gk+,p =p"+'. Two series of odd Fibonacci numbers F,,,, and F3k+2 satisfy the 
same recursion relation as that of Gk and we can conclude from the initial conditions 

H I =  Gk+I-2Gk (=2Gk+Gk-,)  satisfy the same recursion relation as that of Gk 
but with different initial conditions, Ho = 1 and H I  = 2; { H k }  = {1,2,9,38,161,. . .}. 
H k + & G k = p k  and H k / G k  (=Gk+, /Gk-2)  isabestapproximanttod(=p-Z) (Kat 
and Duneau 1986). 

that F 3 k + , = G k + , - G k  and F,k+,=Gk+1+Gx. 

4.2. Im? 

We shall consider the case (F3k+2/F3k+l) in more detail. L, belongs to ImT and 
ob.; (a ,  + o,+o,)/2 belongs to L B ;  oh= r(e, +e,+ e,)+ s(e,+ e,+ e6) with r = Gk+, and 
s = Gk. We may write ab = 7 I k f 2  (1, 1, 1) and L, is generated by a: = ob- a,, i = 1-3. 
+ a :  are parallel to threefold axes of Y. are indexed by K', the reduced form of K ;  
K' is written as K ' = [ ~ r s r f s / s ~ r s r T / r s ~ ~ s r ] ,  where the three groups of six integers 
partitioned by '/' denote the three columns of K '  and a bar is put on a minus index. 
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The appearance of Gk+, and Gk in K' is due to the fact that Gk+,/Gk is a best 
approximant to the incommensurate ratio p associated with the threefold axes. 

4.3. Immm 

In the case of (Fk/ Fk-, , Fk+,/Fk, Fk+,/Fktl), L, belongs to Immm because it is written 
as ( q / ( p - q ) ,  p/q, (p+q) /p )  with p = F,,, and q = Fk. Then ( f a l f a 2 f u 3 ) / 2  belong 
to L,andare parallel to twofold axes, *(e,+e,), *(e,+e,), *(.?,-e6) and f(e4-e6). 
Note that a , : a , : a , = i : ~ : ~ .  K ' i s  written as K'=[OpqpQO/OOpqqp/qOQ~30pI; p/q is 
a best approximant to the irrational T associated with the twofold axes. 

2 

4.4. Cmmm 

In the case where LB belongs to Cmmm, the centring occurs in the plane perpendicular 
to the third axis. The 20 lattice cmm on the plane is characterized by two approximants 
T ,  (= -/+) and T, (= +/-); Cmmm is a vertical stacking of cmm. The basis vectors 
ofcmm are a ;=(a ,+a2) /2and  a ; = ( - a 1 + u 2 ) / 2  withiajl=lu;l.Case 1: T , = F , ~ + , / F , ~  
(=(Gkt l -Gk) / (2Gk))  and T ~ = F ~ ~ / F ~ , - ,  (=2GI/(Gk+Gk_,))  and case 2: T,= 

F3k+l/F3k and T,= F3k+,/F,k+, (=2Gk+,/(Gk+,+Gk)) areof particularinterest. U: and 

a; = p'e,, which are parallel to fivefold axes of Y. Similarly, we obtain in case 2 that 
u:=[rrsFir]=pk(el+e2+r,) with r=Gk+,  and s=Gk and a;=[srSsSrr]= 
pk(-e,+e,-e,),whichareparalleltothreefoldaxes. t / s  (or r/s) isabestapproximant 
to the incommensurate ratio & (or p )  associated with the five- (or three-) fold axis. 

The fact that L, has centring of type 1 (or 2) is due to the presence of two live- 
(or three-) fold axes which are perpendicular to a twofold axis of Y (see figure 1). 
The angle between the two five- (or three-) fold axes is given by cos-'(l/&) =63.43' 
(or cos-'(a/3) =41.81"), which represents the acute inner angle of the rhombic unit 
cell of the ZD lattice cmm. 

& Ere indexed j" case 1 by [!$$J$$j [$$$$f$j with t = H k ,  S" !ha! e; =$,, l"d_ 

5. Periodic npproximants 

We begin with the following expression for a PA to Q(+,  W): 

&4) ={u lu€  L,, d U ) €  4 + m (8) 

where l.i' is an appropriate distortion of W. The point group of *is equal to G. o( 4) 
is a periodic set of points and-its Bravais lattice is given byL.. If +'=&+U with 
U-E L,,weobtain d ( @ ' ) = u + Q ( + )  with u ~ q - ' ( u ) . T h a t i s ,  Q(4')iscongruentwith 
Q( 4) if +'e 4 mod L, (Niizeki 1991a). The number of the lattice points of o( 4) in 
a unit cell is equal to that of L, in the domain I$+ 6' (Niizeki 1991a). 

Two PAS with different phase vectors a? usually different from each other in contrast 
to the case of the QL. The space group of Q( 4) is given by g( 4) = 6 ' ( g s (  4)) (Niizeki 
1991a), where 

(9) gA4)  = {{Dl U)I{uIu)Eg,, { V I  4 4  = 41 

g(4 )=  ttDlU}I{Ul U)€ &(4), PP'(U)1. (10) 

is the point group of 4 with respect to L,.  It follows that 
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The point groupof &+) isgiven by G ( 4 ) = { u l { u l u } ~ g , ( 4 ) } ,  which isisomorphic 
to g.( 4). G( 4) is a subgroup of G. 

6. Special points, lines and planes of L. 

We can define special manifolds (points, lines and planes) in E; with respect to L,; 
a special manifold is the centre, the axis or the plane of a centring subgroup of g,, a 
polar one or the mirror one, respectively. Equivalent special manifolds with respect 
to g, form a class, which has a conventional symbol in solid state physics (Bradley 
and Cracknell 1972). In particular, the lattice points of L, are special points (wS) of 
full symmetry and form the class r. 

If a unit cell of L, is fixed, a representative of each class of sps is included in the 
cell. We shall sometimes identify the represntative with the class. A vector x in E; is 
indexed with b: as x = [ x , x 2 x 3 ] ~ x , b , + x 2 b , + x , b , .  

P ” m  has eight classes of SPS, r, X, Y,  Z, S, T, U and R, whose point groups are 
mmm. Their representatives are [OOO], [hOO], [OhO], [OOh], [Ohh], [hOh],  [hhO] and 
[hhh], respectively, where we mean h = 1/2 throughout this paper. Cmmm has four 
classes of SPS with point group mmm, i.e. r, Y, Z and T, while Fmmm has two, r and 
Y. The representatives of the six are [OOO], [loo], [OOh], [lOh], [OOO] and [loo], 
respectively. P ” m  and Cmmm have no classes of SPS with point group 222, while 
Fmmm has one class, W, whose representative is [hhh]. 

Every special line (or plane) includes sps. Special planes are classified into type I 
or I1 according to whether or not they pass lattice points of L,.  

P ” m  has three classes of type I1 special planes, which are parallel to the three 
mirrors of the point group mmm. If an SP of Pmmm has a half-integer index, it is 
located on a type I1 special plane which is perpendicular to the axis relevant to the 
index. Cmmm has only one class of type I1 special planes, which are perpendicular 
to the third axis. SPS Z and T of Cmmm are located on them. Fmmm has no classes 
of type I1 special planes. 

m TL_ __^__ -e... 1 ______...!___A_ 
I .  1ur rpncr: gruups U. ,,,e rqglmr ayprurrmao,a 

Q( 4) is called a regular approximant if it belongs to the same Bravais class as that 
of L,. The point group of a regular approximant must be mmm, mm2(Czv) or 222(D2) 
if G = mmm, i.e. the case of the orthorhombic approxiant but m3 or 23(T) if G = mT. 
mm2 is a polar group but the other four are centring groups. We confine our considera- 
tions to regular approximants, which are obtained with phase vectors located on special 
points or lines of L, . 

The space group g(  4) of a regular approximant is determined by the class of the 
special manifold on which 4 is located. If G( 4)  = mm2, 4 is located on a special 
line of L.. The special line passes an SP, whose point group is mmm. Let 4’ be the 
position vector of the SP. Then, g.( 4) is a subgroup of g,( 4’) and g(  4)  is a subgroup 
of g(4 ’ ) .  In fact, g(&) is determined as ~ ( ~ ) = { { ~ ~ u ] ~ [ u ~ u l ~ g ( ~ ‘ ) ,  u ~ G ( 4 ) ) .  
Therefore, we can restrict our considerations to the PAS associated with SPI of L,. If 
4 is located on the SP X of L,, we may write g( 4) as g ( X ) .  

It can easily be shown that g( 4) has a mirror if 4 is located on a type I special 
plane of L,; the mirror plane is parallel to the special plane (Niizeki 1991a). On the 
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other hand, if + is located on a type I1 special plane of L., g( 4) has no such mirrors 
but has glides which are parallel to the special plane, which will be proved shortly. A 
glide is denoted as a, b or c according to whether the translation accompanying it is 
a,/2, a2/2 or aJ2, respectively, while it is denoted as n if the translation is (a2+ a3)/2, 

We consider at the moment d( +), the case where G(+) =mmm. We begin with 
the case where L, has a class of type I1 special planes perpendicular to the third axis. 
wc can prove as impiemenied in appendix 2 ihat, if @ is iocated on one of the speciai 
planes, g( +) has glides of type a or b according to whether the parities of pi and qi 

while it has glides of type n in the cases (-I-, VI/-,  v2/- )  and ( - /VI,  -I-, 
where a, and n2 are not together equal to -. Using the equality C3(7,, T ~ ,  T J =  
( T ~ ,  T,, T~), we can derive similar results for the case of type I1 special planes perpen- 
dicular to other axes. In the case of (*I-, +/-, *I*), for example, the glides perpen- 
dicular to  the first axis are of type b. These results are sufficient for us to determine 
g( +) in the case of G(+) = mmm. 

and there exist 27 (=3') parity combinations. They are classified into 11 (Nos 1-7 and 
1'-4') as listed in the second column of table 2 because a cyclic permutation of T~ in 
(T,, T ~ ,  T ~ )  yields the same lattice. The types of the glides associated with type I1 special 

(a3+at)/2 or (a,+a2)/2. 

. . r ~  

in p3 /q3)  conform to (+/ -, *I*, *I-) or (*I*, -I+, -I*), respectiveb, 

Each term in ( p l / q l , p 2 / q 2 , p 3 / q 3 )  can assume three cases, +I-, -/t and 

Table 2. The space groups of the regular orthorhombic approximants associated with SR 
of L. and cubic ones. There exist I 1  cases depending an the parity combinations of p 8  and 
q, in ( p , / q l .  p J q r .  p , /q , ) .  In the division of 'Bravais class', the fint (or second) column 
shows those of L. (or LJ.  "he symbols P, I or F refer lo the primitive orthorhombic, the 
body-centred one or the face-centred one, respeaively, while A, B or C to A., B- or 
C-centred one. The three wlumns under the heading 'glide' show the glides perpendicular 
to the first, second and third axes in this order; an asterisk shows that no glides exist at 
that place. The column of 'space group' is composed of two subdivisions referring to 
arlhorhombic approximants and the cubic ones. I n  the case of a primitive orthorhombic 
approximant, thespacegroupinparenthesesshowstheprototypeandspaccgroupsobtained 
from it by replacing any number of the glides by mirrors are also allowed. Parity combina- 
tions are inverted between n and n', n = 1-4, in the sense that the parities of numeraton 

such a pair, e.g. Pbca of No. 1 and Pcab of No. 1'. The space group associated with a 
special line of Ls is obtained as a subgroup of the one listed in the table. 

and those ofthc denominators are interchanged, The space goups are isomorphic hlwcc!! 

Parity Bravais 
NO combination &SS Glide Space group 

1 (+I-. +I-. +I-) 
1' (-I+, -I+. -I+) 
2 (+I-. +I-. -I-) 
2' (-I+, -I+, -I-) 
3 (-I-. -I-, +I-) 
3' (-I-, -I-, -I+) 

4 (-I+. +I-. +I-) 
4' (-I+, +;-, -I+) 
5 (-I+. +I-* -I-) 
6 (+I-* -I+. -I-) 
7 (-I-. -I-. -I-) 

P P b c a  
P P c a b  
P P h n a  
P P c n b  
P P n c n  
P P n n b  

C B * c *  
c .. n G I *  
C F * * *  
I C * * a  
1 F * * I  

(Pbca) h J ,  Pa3 

(Pbna) 
(Pcnb) 
(P"C") 
(Pnnb) 

Cmmm, Cmcm 
Cmmm, CC" 
Cmmm. C222, 

Immm, lmma 
Immm, I222 Im?, I23 

(Pcab) hj, pb3 
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planes are listed in the fifth column of the table. Using the results, we can easily classify 
the space groups whose point groups are mmm. Consider, for example, the case of 
No. 1 in the table, i.e. (+/-, +/-, +/-). Then LE and L, belong to Rnmm and the 
space groups associated with SPS I', X, Y, Z, S, T U and R of L. are Rnmm, Pbmm, 
Pmcm, Pmma, Pmca, Pbma, Pbcm and Pbca, respectively; the last space group, Pbca, 
is a prototype of them and others are obtained from the prototype by replacing one 
or more glides by the mirror(s). 

5 (or 6 and 7) in table 2, while g ( Z )  and g( T )  to Cmcm, Ccmm or Imma for Nos 4, 
4' or 6, respectively. Note, however, that each pair of PAS with the same space group 
have different structures. 

The case where L, belongs to Fmmm needs an additional consideration because 
its SP W has the point group 222. It is shown in appendix 3 that the space group of 
the PA associated with W is C222, or I222 according to whether LE belongs to Cmmm 
(No. 5 )  or Immm (No. 7), respectively. 

r h n t  h -rh  "(F) n-J -lV\ " - ~  * - P I . - -  I-- TI--> F..- L7-- A 1) - -> 
l . " L I  L1LL.L ""U. 6,' , '.B. Y 6 ,  1 , '.Ir C ' I U P L  L" L111.111.1 ,"L '.l.L",LL, ,U, ,.U> .., .I a,,u 

8. Discussion 

There exist two alternatives for introducing the Cartesian coordinate system into Y 
(the icosahedron) so that the three axes are parallel to the twofold axes of Y, we have 
adopted one of them. The other is obtained from ours by rotating it through ~ / 2  
around the first axis (cf. figure 1). This is the coordinate system adopted by Dmitrienko 
(1990). In this system, the results in table 2 are interchanged between Nos n and n' 
with n = 1-4. Therefore, two space groups of such a pair (e.g. Pbca of No. 1 and Pcab 
of No. 1') are isomorphic. Note, however, that the two space groups can be distinguished 
by their orientations with respect to the pseudo-icosahedral symmetry of the PAS. 

The cubic approximants are treated as special cases of the orthorhombic ones. 
Since the point symmetry is higher, regular cubic approximants are greatly restricted. 
Consider, for example, case No. 1 in table 2. Then, Pmmm and Pbca are associated 
with r and R and they are lifted in the cubic case to Pm3 and Pa3, respectively, 
because the point groups of r and R become m3. Other space groups remain unchanged 
a11u a,= ,,VI ,sgurar LAXU,b 'lyy'u"L"L"LLL'. D y  DLLIIIIaI a,gu,,,G,,La, W G  u"La_III UIIISL CUUlb 

approximants as listed in table 2. The present results agree with those of Dmitrienko 
(1987, 1990) except one point; he obtained 12,3 instead of I23 for the case (-/-). 

Since the primitive IQL has a self-similarity whose scale is p (=T'), we can generate 
from a given PA to the IQL another one by deflation and rescaling (Niizeki 1991b). 
The unit cell of the new PA is p-times that of the original one and the space group is 
common between the two. This is the reason why the parities of p,  and q, are of vital 
importance in table 2. 

Spaepen et a /  (1990) have found in the Cia-Mg-Zn system an orthorhombic 
approximant (3/2, 2/1, 2/1), which belongs to No. 4 in table 2; L.=Cmmm and 
L,= Bmmm. They reported that the Bravais lattice of this approximant is the base- 
centred orthorhombic in agreement with the present theory. The two basis vectors in 
the basal plane are parallel to fivefold axes. g ( Z )  = g( T) = Cmcm with Z = [Oh01 and 
T = [ IhO]  are SPS of Bmmm. Cmc2, is a subgroup of Cmcm and is the space group of o( 4) with 4 =[Ohs] ,  O <  (< 1, which is located on the special line A; the special 
line passes not only Z but also T because [l hO] = [Ohl] mod L,.  This space group is 
identical to the space group of the model structure constructed by Ohashi (1989) for 

^--I --- --. -"-..l..-n..L:-" _ ^ _ I "  D.. ":-:I"- -"-a" ... ̂  -L*,.:- -.Ln _^.. L:̂ 
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this approximant crystal; the model is derived on the basis of the canonical cell packing 
model by Henley (1991). 

Spaepen et al have reported the three cubic approximants ( l / l ) ,  (2/1) and (3/2) 
for the same system; the first one belongs to  the body-centred cubic Bravais class but 
the latter two to the primitive one in agreement with the present theory. Henley (1991) 
constructed structural models for the latter two approximants. Their space groups are 
reported to be Pa?(2/1) and Pa3(3/2) but the latter should be assigned to Pb?(3/2) in 
our coordinate system (see also Dmitrienko 1990). Note that two cubic crystals 
Mg2Cu2A15 and Mg2Zn,, reported by Samson (1949a,b) are considered to be 
approximant crystals of type (1/0) (Ohashi 1989); their sace groups are Pm?. 

Audierand Guyot (1990), Spaepen er al(l990) reported rhombohedral approximant 
crystals to the icosahedral quasicrystals. The icosahedral QL has a variety of rhombo- 
hedral approximants, which will be discussed elsewhere. 

Acknowledgment 

This work was supported by a Grant-in-Aid for Science Research from the Ministry 
of Education, Science and Culture. 

Appendix 1 

We consider a different deformation of L from that in the text. That is, we shall replace 
T in each of the first three rows of ( 1 )  by T~ =pi/qi with i being the row number. Then, 
the resulting lattice L iscommensurate with E ; .  The physical space components e?( of 
the basis vectors E*j ofAL are represented by a similar equation to (3) but J is replaced 
by J = ‘ K  (cf. (6)). L , = L n  E ;  is a 3~ Bravais lattice whose basis vectors Ci, are 
represented by a, similar equation to (5) but K is replaced by K = ‘ J  (cf. (4)). The 
point group of L. is the same as that of LE. 

Since K ( = ‘ J )  is obtained from K by the replacements: p; + qi and q; + -p j ,  we 
can conclude that f, belongs to h m m ,  Cmmm or Immm according to whether parities 
of p i  and q; satisfy the first, second or third condition in the second column of table 
I(b);  the panties of the denominators and numerators are inverted in these columns 
between tables l (a )  and (b). It follows that J ( = ‘ ( K ) )  is ‘unimodular’ in the case of 
Pmmm. Since a ‘unimodular’ 3 x 6  matrix represents a surjection from Z 6  onto Z3,  we 
can conclude that JZ6 = Z’ for this case, so that L, belongs to P ” m .  On the other 
hand, if f belongs to Cmmm or Immm, J is decomposed as HJ‘ with H = H, or H,, 

m, + m2 = even} or { m  I m E Z’, m, + m2+ m3 =even) for the case Cmmm or Immm, so 
that L, belongs to Cmmm or Fmmm, respectively. 

and I’ being hnimodu!ar’: n e n  we ohtain JZ6 = which is q u a !  to { m  I m E z’, 

Appendix 2 

We begin with a lemma: let U E L, and assume that (i) r = U + u3u E L, with u3 E mmm 
being the mirror perpendicular to the third axis, (ii) tZO and (iii) t/2C L,. Then, 
a I {u3 I U) E g, is a glide and the translation accompanying a is t/2 because cr2 = {E I t). 
Assume furthermore that (iv) U = q ( u )  takes the form U = k3L3 with k3 being an odd 



1854 K Niizeki 

integer. Then, {u , Iu}  (=(p(a)) is a type I1 mirror o,f L. because the mirror cuts the 
third axis at k3b3/2 .  It follows that a is a glide of Q(4) provided that 4 is located 
on that mirror plane. 

We shall apply the above lemma to each of the four cases in the text. In the case 
of (+/-, */*,  */-), pI is even but q1 and q, are odd and u = ( p , / 2 )  (e ,+e , )+q ,e3  
satisfies the conditions of the lemma; we obtain that k, = q,q, and t=  a,. It follows 
that a is the a glide. The case (*/*, -/ +, -/*) is treated similarly; u = ( q 2 / 2 )  
(et-e5)+p2e2, k 3 = - p z p ,  and t=a2 .  so that a is the b glide. 

Finally we consider the case where pI and q2 are both odd. Let U =  
n,e,+p2e2+q,e3+n5e5 with n , = ( p , + q 2 ) / 2  and n 5 = ( p , - q 2 ) / 2 .  Then we obtain that 
k, = -p2p3 + qlq, and f = uI + az. It follows that a is the n glide provided that k3 is 
odd. This applies to the last two cases in the text. 

Appendix 3 

We consider the case (-/n, n/-, -/-) with n = + or -. Then, L, belongs to Immm 
and ~ ~ ( - p l p 3 b , + q 2 q 3 b 2 - q 3 p 3 b 3 ) / 2  belongs to class W of sps of L, because 
( b ,  + b,+ b , ) / 2  mod L,.  Let Ri, i = 1-3, be the rotations through T around the three 
axes of the point group 222 of W. Then g,( 4) ( - 2 2 2 )  is generated by { R j  I U'')}, i = 1-3, 
with u ' " - $ - R ; ~ E L , ;  we can easilycheckthat u'"=(pp(u"') with u( ' )=q,e , ,  U " ) =  

-p,e, and d3)= q3e2+p,e,. Therefore g ( & ) =  LB+a ,Ln+azLn+a3Ln with a;= 
{R; I U")}, where L. is identified with ({E 1 U } /  U E LB}. a, and a, are rotations because 
u'l'+R ,U (1)=0 and u ' ~ ' + R ~ u ' ~ ) = O ,  while a3 is a screw because uc3)+R,u'"= a,. 
Then, we can concude that g(W)=C222 ,  for the case T = + .  On the other hand, 
t- (a,+.,+ . , ) /?E LE for the case T = - and f +  R3t = a,, so that ai= {E I -t}a, is a 
rotation and we obtain g( wj = 1222 for this case. 
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